Most Complex Deterministic Union-Free Regular Languages

نویسندگان

  • Janusz A. Brzozowski
  • Sylvie Davies
چکیده

A regular language L is union-free if it can be represented by a regular expression without the union operation. A union-free language is deterministic if it can be accepted by a deterministic one-cycle-freepath finite automaton; this is an automaton which has one final state and exactly one cycle-free path from any state to the final state. Jirásková and Masopust proved that the state complexities of the basic operations reversal, star, product, and boolean operations in deterministic unionfree languages are exactly the same as those in the class of all regular languages. To prove that the bounds are met they used five types of automata, involving eight types of transformations of the set of states of the automata. We show that for each n > 3 there exists one ternary witness of state complexity n that meets the bound for reversal and product. Moreover, the restrictions of this witness to binary alphabets meet the bounds for star and boolean operations. We also show that the tight upper bounds on the state complexity of binary operations that take arguments over different alphabets are the same as those for arbitrary regular languages. Furthermore, we prove that the maximal syntactic semigroup of a union-free language has nn elements, as in the case of regular languages, and that the maximal state complexities of atoms of union-free languages are the same as those for regular languages. Finally, we prove that there exists a most complex union-free language that meets the bounds for all these complexity measures. Altogether this proves that the complexity measures above cannot distinguish union-free languages from regular languages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Union-Free and Deterministic Union-Free Languages

The paper continues the study of union-free and deterministic union-free languages. In contrast with the fact that every regular language can be described as a finite union of union-free languages, we show that the finite unions of deterministic union-free languages define a proper subfamily of regular languages. Then we examine the properties of this subfamily.

متن کامل

Complexity in Union-Free Regular Languages

We continue the investigation of union-free regular languages that are described by regular expressions without the union operation. We also define deterministic union-free languages as languages accepted by one-cycle-free-path deterministic finite automata, and show that they are properly included in the class of union-free languages. We prove that (deterministic) union-freeness of languages d...

متن کامل

State Complexity of Prefix-Free Regular Languages

We investigate the state complexities of basic operations for prefix-free regular languages. The state complexity of an operation for regular languages is the number of states that are necessary and sufficient in the worst-case for the minimal deterministic finite-state automaton (DFA) that accepts the language obtained from the operation. We know that a regular language is prefix-free if and o...

متن کامل

Deterministic Fuzzy Automaton on Subclasses of Fuzzy Regular ω-Languages

In formal language theory, we are mainly interested in the natural language computational aspects of ω-languages. Therefore in this respect it is convenient to consider fuzzy ω-languages. In this paper, we introduce two subclasses of fuzzy regular ω-languages called fuzzy n-local ω-languages and Buchi fuzzy n-local ω-languages, and give some closure properties for those subclasses. We define a ...

متن کامل

State Complexity of k-Union and k-Intersection for Prefix-Free Regular Languages

We investigate the state complexity of multiple unions and of multiple intersections for prefix-free regular languages. Prefix-free deterministic finite automata have their own unique structural properties that are crucial for obtaining state complexity upper bounds that are improved from those for general regular languages. We present a tight lower bound construction for k-union using an alpha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1711.09149  شماره 

صفحات  -

تاریخ انتشار 2017